Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of Two Satellite DNA Families in the Genome of the Oomycete Plant Pathogen Phytophthora parasitica.

Identifieur interne : 000276 ( Main/Exploration ); précédent : 000275; suivant : 000277

Characterization of Two Satellite DNA Families in the Genome of the Oomycete Plant Pathogen Phytophthora parasitica.

Auteurs : Franck Panabières [France] ; Corinne Rancurel [France] ; Martine Da Rocha [France] ; Marie-Line Kuhn [France]

Source :

RBID : pubmed:32582290

Abstract

Satellite DNA is a class of repetitive sequences that are organized in long arrays of tandemly repeated units in most eukaryotes. Long considered as selfish DNA, satellite sequences are now proposed to contribute to genome integrity. Despite their potential impact on the architecture and evolution of the genome, satellite DNAs have not been investigated in oomycetes due to the paucity of genomic data and the difficulty of assembling highly conserved satellite arrays. Yet gaining knowledge on the structure and evolution of genomes of oomycete pathogens is crucial to understanding the mechanisms underlying adaptation to their environment and to proposing efficient disease control strategies. A de novo assembly of the genome of Phytophthora parasitica, an important oomycete plant pathogen, led to the identification of several families of tandemly repeated sequences varying in size, copy number, and sequence conservation. Among them, two abundant families, designated as PpSat1 and PpSat2, displayed typical features of satellite DNA and were collectively designated as PpSat. These two satellite families differ by their length, sequence, organization, genomic environment, and evolutionary dynamics. PpSat1, but not PpSat2, presented homologs among oomycetes. This observation, as well as the characterization of transcripts of PpSat families, suggested that these satellite DNA families likely play a conserved role within this important group of pathogens.

DOI: 10.3389/fgene.2020.00557
PubMed: 32582290
PubMed Central: PMC7290008


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of Two Satellite DNA Families in the Genome of the Oomycete Plant Pathogen
<i>Phytophthora parasitica</i>
.</title>
<author>
<name sortKey="Panabieres, Franck" sort="Panabieres, Franck" uniqKey="Panabieres F" first="Franck" last="Panabières">Franck Panabières</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot</wicri:regionArea>
<wicri:noRegion>Biot</wicri:noRegion>
<wicri:noRegion>Biot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rancurel, Corinne" sort="Rancurel, Corinne" uniqKey="Rancurel C" first="Corinne" last="Rancurel">Corinne Rancurel</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot</wicri:regionArea>
<wicri:noRegion>Biot</wicri:noRegion>
<wicri:noRegion>Biot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Da Rocha, Martine" sort="Da Rocha, Martine" uniqKey="Da Rocha M" first="Martine" last="Da Rocha">Martine Da Rocha</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot</wicri:regionArea>
<wicri:noRegion>Biot</wicri:noRegion>
<wicri:noRegion>Biot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuhn, Marie Line" sort="Kuhn, Marie Line" uniqKey="Kuhn M" first="Marie-Line" last="Kuhn">Marie-Line Kuhn</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot</wicri:regionArea>
<wicri:noRegion>Biot</wicri:noRegion>
<wicri:noRegion>Biot</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32582290</idno>
<idno type="pmid">32582290</idno>
<idno type="doi">10.3389/fgene.2020.00557</idno>
<idno type="pmc">PMC7290008</idno>
<idno type="wicri:Area/Main/Corpus">000158</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000158</idno>
<idno type="wicri:Area/Main/Curation">000158</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000158</idno>
<idno type="wicri:Area/Main/Exploration">000158</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of Two Satellite DNA Families in the Genome of the Oomycete Plant Pathogen
<i>Phytophthora parasitica</i>
.</title>
<author>
<name sortKey="Panabieres, Franck" sort="Panabieres, Franck" uniqKey="Panabieres F" first="Franck" last="Panabières">Franck Panabières</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot</wicri:regionArea>
<wicri:noRegion>Biot</wicri:noRegion>
<wicri:noRegion>Biot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rancurel, Corinne" sort="Rancurel, Corinne" uniqKey="Rancurel C" first="Corinne" last="Rancurel">Corinne Rancurel</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot</wicri:regionArea>
<wicri:noRegion>Biot</wicri:noRegion>
<wicri:noRegion>Biot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Da Rocha, Martine" sort="Da Rocha, Martine" uniqKey="Da Rocha M" first="Martine" last="Da Rocha">Martine Da Rocha</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot</wicri:regionArea>
<wicri:noRegion>Biot</wicri:noRegion>
<wicri:noRegion>Biot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuhn, Marie Line" sort="Kuhn, Marie Line" uniqKey="Kuhn M" first="Marie-Line" last="Kuhn">Marie-Line Kuhn</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot</wicri:regionArea>
<wicri:noRegion>Biot</wicri:noRegion>
<wicri:noRegion>Biot</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in genetics</title>
<idno type="ISSN">1664-8021</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Satellite DNA is a class of repetitive sequences that are organized in long arrays of tandemly repeated units in most eukaryotes. Long considered as selfish DNA, satellite sequences are now proposed to contribute to genome integrity. Despite their potential impact on the architecture and evolution of the genome, satellite DNAs have not been investigated in oomycetes due to the paucity of genomic data and the difficulty of assembling highly conserved satellite arrays. Yet gaining knowledge on the structure and evolution of genomes of oomycete pathogens is crucial to understanding the mechanisms underlying adaptation to their environment and to proposing efficient disease control strategies. A
<i>de novo</i>
assembly of the genome of
<i>Phytophthora parasitica</i>
, an important oomycete plant pathogen, led to the identification of several families of tandemly repeated sequences varying in size, copy number, and sequence conservation. Among them, two abundant families, designated as
<i>PpSat1</i>
and
<i>PpSat2</i>
, displayed typical features of satellite DNA and were collectively designated as
<i>PpSat</i>
. These two satellite families differ by their length, sequence, organization, genomic environment, and evolutionary dynamics.
<i>PpSat1</i>
, but not
<i>PpSat2</i>
, presented homologs among oomycetes. This observation, as well as the characterization of transcripts of
<i>PpSat</i>
families, suggested that these satellite DNA families likely play a conserved role within this important group of pathogens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32582290</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-8021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in genetics</Title>
<ISOAbbreviation>Front Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of Two Satellite DNA Families in the Genome of the Oomycete Plant Pathogen
<i>Phytophthora parasitica</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>557</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fgene.2020.00557</ELocationID>
<Abstract>
<AbstractText>Satellite DNA is a class of repetitive sequences that are organized in long arrays of tandemly repeated units in most eukaryotes. Long considered as selfish DNA, satellite sequences are now proposed to contribute to genome integrity. Despite their potential impact on the architecture and evolution of the genome, satellite DNAs have not been investigated in oomycetes due to the paucity of genomic data and the difficulty of assembling highly conserved satellite arrays. Yet gaining knowledge on the structure and evolution of genomes of oomycete pathogens is crucial to understanding the mechanisms underlying adaptation to their environment and to proposing efficient disease control strategies. A
<i>de novo</i>
assembly of the genome of
<i>Phytophthora parasitica</i>
, an important oomycete plant pathogen, led to the identification of several families of tandemly repeated sequences varying in size, copy number, and sequence conservation. Among them, two abundant families, designated as
<i>PpSat1</i>
and
<i>PpSat2</i>
, displayed typical features of satellite DNA and were collectively designated as
<i>PpSat</i>
. These two satellite families differ by their length, sequence, organization, genomic environment, and evolutionary dynamics.
<i>PpSat1</i>
, but not
<i>PpSat2</i>
, presented homologs among oomycetes. This observation, as well as the characterization of transcripts of
<i>PpSat</i>
families, suggested that these satellite DNA families likely play a conserved role within this important group of pathogens.</AbstractText>
<CopyrightInformation>Copyright © 2020 Panabières, Rancurel, da Rocha and Kuhn.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Panabières</LastName>
<ForeName>Franck</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rancurel</LastName>
<ForeName>Corinne</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>da Rocha</LastName>
<ForeName>Martine</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuhn</LastName>
<ForeName>Marie-Line</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>INRAE, UCA, CNRS, ISA Sophia Antipolis, Biot, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Genet</MedlineTA>
<NlmUniqueID>101560621</NlmUniqueID>
<ISSNLinking>1664-8021</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phytophthora</Keyword>
<Keyword MajorTopicYN="N">centromere</Keyword>
<Keyword MajorTopicYN="N">evolution</Keyword>
<Keyword MajorTopicYN="N">genome structure and organization</Keyword>
<Keyword MajorTopicYN="N">satellite DNA</Keyword>
<Keyword MajorTopicYN="N">telomere</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32582290</ArticleId>
<ArticleId IdType="doi">10.3389/fgene.2020.00557</ArticleId>
<ArticleId IdType="pmc">PMC7290008</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Eukaryot Microbiol. 2019 Jan;66(1):4-119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30257078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Apr 25;8(1):6534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29695739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2008 May;154(Pt 5):1482-1490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1998 Mar;88(3):205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2016 Sep;106(9):1006-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27111805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Dec;8(12):973-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17984973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Feb;27(2):221-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):243-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2870520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Sep;24(9):3559-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22968715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2018 Mar 2;8(3):875-886</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29311112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2008 Feb 15;409(1-2):72-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mob DNA. 2015 Jun 02;6:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26045719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2017 Feb 10;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28186564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2019 Apr 1;11(4):1152-1165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30888421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Sep 15;371(6494):215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8078581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2012 May;9(5):587-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22647527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2015 Sep;23(3):463-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26403245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W70-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1549-1551</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 11;96(10):5878-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 Feb 20;187(4):495-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3012090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2009;124(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19372670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):254-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1980 Apr 17;284(5757):604-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7366731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2015 Apr;31:12-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25917896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2020 Jan 09;11(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31936645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e51399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23272103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Dec 10;218(4577):1069</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7146894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e34728</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22529930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 2017;82:15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29133300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1975 Jun 26;255(5511):704-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1134565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2019 Nov;32(11):1472-1474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31306082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1980 Sep 11;8(17):3779-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6255416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Mar 15;7:284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27014308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 22;7:1938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28066490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 15;27(2):573-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IMA Fungus. 2017 Dec;8(2):355-384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29242780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2018 Apr 18;16(1):43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29669603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2016 Dec;106(12):1553-1562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27442534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2016 May;90:24-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2018 Apr;49:70-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29579574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 May;16(4):413-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 May 02;8:773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28512457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2015 Dec;35:57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Inform. 2014 Sep;12(3):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25317107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 May 08;10(6):417-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2015 Sep;23(3):415-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26514350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1996 Oct;13(8):1059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8865660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008 Jan;165(1):83-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Nov;6(11):1035-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16264428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mob DNA. 2019 Jan 18;10:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30675191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2017 Mar 29;81(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28356329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2017 Sep 18;8(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28926993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9842-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 1989 Oct;98(4):273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2515043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2016 Jul;29(7):573-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27183038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1098-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2016 Feb 12;8(3):681-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26872771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):19974-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24282300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2019 Mar 16;10(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30884847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2016 Jan 28;5:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26823972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Jun;9(6):e1003272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2018 Sep;26(3):115-138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29974361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2004 Mar;41(3):369-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14761797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Nov 30;9:2841</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30555430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Nov 10;16:917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26556056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2018 Apr;49:79-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29597064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Aug;211(3):993-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27010746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2004 Sep;113(2):77-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Nov 29;13(1):36-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22124482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 21;8(10):e77181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Jul 23;20(14):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31340492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Oct 12;15:891</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25306241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2005 Apr;15(2):177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15797200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1999 Aug;36(1-2):105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10447602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2015 Oct;13(5):278-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26542840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1980 Apr 17;284(5757):601-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6245369</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Panabieres, Franck" sort="Panabieres, Franck" uniqKey="Panabieres F" first="Franck" last="Panabières">Franck Panabières</name>
</noRegion>
<name sortKey="Da Rocha, Martine" sort="Da Rocha, Martine" uniqKey="Da Rocha M" first="Martine" last="Da Rocha">Martine Da Rocha</name>
<name sortKey="Kuhn, Marie Line" sort="Kuhn, Marie Line" uniqKey="Kuhn M" first="Marie-Line" last="Kuhn">Marie-Line Kuhn</name>
<name sortKey="Rancurel, Corinne" sort="Rancurel, Corinne" uniqKey="Rancurel C" first="Corinne" last="Rancurel">Corinne Rancurel</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000276 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000276 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32582290
   |texte=   Characterization of Two Satellite DNA Families in the Genome of the Oomycete Plant Pathogen Phytophthora parasitica.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32582290" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024